MTH 301: Group Theory Homework III

 $(Due \ 16/09)$

- 1. Let G be a group, $H \leq G$, and $N \leq G$. Then show that:
 - (a) $NH \leq G$.
 - (b) $H \cap N \trianglelefteq H$.
 - (c) $N \leq NH$.
 - (d) If $H \trianglelefteq G$, then $NH \trianglelefteq G$.
 - (e) If o(a) is finite for some $a \in G$, then $o(Na) \mid o(a)$.
- 2. Let G be a group, and $H \leq G$. Then prove that
 - (a) $Z(G) \leq G$.
 - (b) $N(H) \leq G$.
 - (c) $H \leq N(H)$.
 - (d) N(H) is the largest subgroup in which H is normal.
 - (e) $H \leq G$ if, and only if N(H) = G.
- 3. Let G be a group, and let $g \in G$ be a fixed element. Then show that the map $\varphi_g: G \to G$ defined by

$$\varphi_g(x) = gxg^{-1}$$
, for all $x \in G$,

is an isomorphism.

4. For a group G, consider the subgroup generated $[G,G] = \langle S \rangle$ generated by elements in the set

$$S = \{ghg^{-1}h^{-1} \,|\, g, h \in G\}.$$

- (a) Show that $[G, G] \leq G$. [This subgroup is called the *commutator subgroup or* the derived subgroup of G. It is also denoted by G' or $G^{(1)}$.]
- (b) Show that G/[G,G] is abelian.
- (c) Show that G is abelain if, and only if $[G, G] = \{1\}$.
- 5. Using the First Isomorphism Theorem, establish the following isomophisms.
 - (a) $\operatorname{GL}(n,\mathbb{C})/\operatorname{SL}(n,\mathbb{C}) \cong \mathbb{C}^{\times}$
 - (b) $S_n/A_n \cong \mathbb{Z}_2$.
 - (c) $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.
 - (d) $\mathbb{C}^{\times}/N = \mathbb{R}^+$, where $N = \{z \in \mathbb{C} \mid |z| = 1\}$ and \mathbb{R}^+ is the group of positive reals under multiplication.